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Abstract. Two conditions are derived for Ising models to show non-universal eritical behaviour,
namely, conditions concerning (i) Jogarithmic singnlarity of the specific heat and (ii) degeneracy
of the ground state. These conditions are satisfied by the eight-vertex model, the Ashkin-Teller
model, some Ising models with short- or long-range interactions and even Ising systems without
the translational or rotational invariance.

1. Introduction

The universality of critical exponents is one of the most important concepts in critical
phenomena. According to this universality hypothesis, critical exponents depend only upon
the dimensionality, the symmetry and the interaction range of Hamiltonians, namely they are
independent of the details of the relevant Hamiltonian such as the strength of the interactions
in ordinary situations.

It is quite interesting to study under what condition this hypothesis is violated from the
form of the Hamiltonian.

The first example that violates the universality hypothesis is the eight-vertex model
solved by Baxter [1]. This model can be mapped {2, 3] onto the two-layered square-lattice
Ising model, in which two layers interact with each other, via a four-body interaction
Js. The critical exponents of this model vary with parameter @, which is a function of
interaction energies. The exponents are obtained [1] as ¢ = 2 — w/u, 8 = n/l6u,
v = m/2u and the scaling hypothesis or the weak universality hypothesis [4] insists
that y = 7v/4 = Tx/8u, § = 15, n = 1/4. Kadanoff and Wegner [3] have shown
that the existence of marginal operators is a necessary condition for the appearance of
continupusly varying critical exponents. Kadanoff and Brown [5] have shown that the
long-range behaviour of the correlations of the eight-vertex and the Ashkin-Teller models
are asymptotically the same as those of the Gaussian model.

There exists another model which consists of short-range two-body interactions and
which is believed to have continuously varying critical exponents. The s = % square-
lattice Ising model with the nearest-neighbour interaction J and the next-nearest-neighbour
interaction J” have been studied by many authors [6-12] to obtain the phase diagram. The
numerical calculations of van Leeuwen [13], Nightingale [14] and Swendsen and Krinsky
[15] are the first to show the non-universal critical behaviour of this model. The singular
part of the free energy is calculated perturbatively by Barber [16]. The results of the
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high-temperature expansion by Oitmaa [17]} agree with these calculations. The coherent-
anomaly method (CamM) [18-22] is applied to this model and the continuously varying
critical exponents are estimated with errors smaller than ~ 1% [21,22]. The degeneracy
of the ground-state energy and the existence of a multi-component order parameter have
been studied by Jingling [23] and Krinsky and Muhamel [24]. A more general Hamiltonian
has been investigated by the present authors [22] which includes the above two models as
special cases and which has continuously varying critical exponents.

In the present paper, we phenomenologically derive a sufficient condition which has
continuously varying critical exponents. This study is a generalization of the argument
reported in [25]. Our condition is satisfied in the eight-vertex model, the Ashkin-Teller
model and the s :% square-lattice Ising model with next-nearest-neighbour interaction.
Qur condition is also satisfied by some systems including long-range interactions and with
some systems without translational or rotational invariance.

Brief explanations of the relevant models are given in section 2, together with
some explicit conditions on continuously varying critical exponents. A phenomenological
perturbation scheme [26] is explained in section 3 and applied to the eight-vertex model
in order to demonstrate that our scheme provides the exact first-order derivative of the
critical temperature and exponent ¥ of the eight-vertex model in section 4. The temperature
dependence of comrelation functions and the characteristic cancellations of interaction
energies at the ground state are discussed in section 5. The symmetry of the relevant
model is studied in section 6. In section 7, the perturbational scheme explained in section 3
is applied to the model defined in section 2. It is derived that there exist finite first- or
second-order derivatives (with respect to the interaction energies) of the critical exponent
y and, hence, that it varies continuously as a function of interaction energies. Finally,
in section 8, the condition in section 2 is generalized to include a more general type of
interaction. i

2. Models

Let us consider the following Hamiltonian:
H=) M+ Hu @n
k H

where {1} is a finite set of two-dimensional Ising systems. In the present paper, we derive
that the model with Hamiltonian (2.1) will have continuously varying critical exponents
provided it ratisfies the following two conditions.

(i) The specific heat of H, shows the logarithmic singularity at the critical temperature
T, which is independent of k.

(ii) The ground-state energy of the total Hamiltonian # is invariant for the spin inversion
of each M. Here, H, is written as

M = —Jur Z o®of 2.2)
]

where O% and O are the n®)-body and n¥-body spin product of spins belonging to H
and H;, respectively,

The logarithmic singularity in condition (i} results in the temperature dependence of the
correlation functions of the form {s;s;) = co + c1€Ine, where € = (T — T.)/ T, and ¢ and
¢ are some constants. This formula is derived in section 5.

The restriction on Oi(k) and Of‘) in condition (it) can be partially removed and more
complicated interactions are permitted, i.e. > and n® can depend on the region R, in
(5.6). This generalization is explained in section 8.
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3. Perturbational scheme

To derive the non-universal critical behaviour of these models, let us consider the
perturbational expansion [26] with respect to interaction energies. The susceptibility x
is assumed to behave as

x ~e(J)yre €(J} = (T = T(N)/T.(J} 3.1

where J is an interaction energy. Differentiating ¥ with respect to J, we obtain

XN . [ oy L (3Y _{¥
(EF)H“"“{ ) (aJ)o (af)o"’gé(o’] ¢-2)

where the subscript 0 denotes J = 0. Hence, we can obtain (8y/8.J) from the coefficient
of the temperature dependence yologe. On the other hand, the susceptibility is expressed
by the two-spin correlation functions in the form

X = ﬁ)u'% Z giujo (Sf'osja) (3.3)
injo

where g = 1/4pT, up is the Bohr magneton and {g;,;,} denote the signs coming from the
emerging order. We differentiate (3.3) and estimate (8y/8.J)¢ by comparison with (3.2).
The existence of a finite and non-vanishing derivative of the exponent v is evidence for the
appearance of continuously varying critical exponents.

4. Example

Here we give two important examples. Let us consider the zero-field eight-vertex model.
The Hamiltonian Hgy of this model is written as Hgv = Hi + Ha2 + Hiz, where H; and
‘Ha denote the following Hamiltonians:

I
Hi=~J Z (SijSia1j41 + SijSit1j-1)

i+ j=even
(4.1)
Hy=—=1 Z (SejSir1j41 + SijSivrj-1)
i+7=odd
and Hm is
Hiz=—J4 ZSUS:+:;+JS='+USU+1- 4.2)

This model decouples into the two square-lattice Ising models H; and H; when J4 = 0.
The interaction Hj2 has even symmetry for the spin inversion of each subsystern H; and
H> and, hence, the energy of Hgy is four-fold degenerate in the whole temperature region.
This model obviously satisfies conditions (i) and (ii) in section 2. The weight g ;, equals
1 for J' > 0. Differentiating (3.3) with respect to J4 and using the fact that the model
decouples into two layers when J4 = 0, we obtain the following expression:

]
(%) =8%uf D [(Sunsysustarrslo — (ojoSidolSusketsi)o] (Surrseerdo  (4.3)
4/ 1=0 io joljki
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where { )p denotes the expectation value for J; = 0. This expression coincides with

ax _ X r©
(ﬁ)wwo 6 e (4.4)

Here, wy denotes the nearest-neighbour two-spin correlation function which shows the
following behaviour:

!

1 47

at the critical point, Comparing (4.4) and (4.5) with (3.2), we obtain

aT, T.(0 a
(._°) 1) (—}i) O (4.6)
s/ o V2I s/ 1,0 " 7kpTo(0)
which are identical to the derivatives obtained from the exact result by Baxter.
The square-lattice Ising model with antiferromagnetic next-nearest-neighbour interac-

tions is another example. The Hamiltonian of this model is given in the form Hsap =
Hi + Ha 4 Hj2, where H, and H, are given by (4.1) for J' < 0 and H2 is

wg =

Hip = —J D (58151 + $Sy41)- “.7)

i

The ground state of this model is ordered as the Néel state in each sublattice for the
interaction region {J/J'| < 2, in which the ground-state energy is invariant for the spin
inversion of each sublattice. 1t is in this interaction region |J/J'| < 2 that this model is
considered to have continuously varying critical exponents. This model also satisfies the
condition in section 2. It is shown in [16,25] that this model has continuously varying
critical exponents with derivatives (3y/8J)g = 0 and (8%y/8J%)q # 0.

5. Preliminary formulae

The temperature dependence of correlation functions is specified from condition (i). For the
purpose of obtaining multi-spin correlation functions, let us consider Hy = My —J O, where
@ denotes a certain spin product. The free energy fas of this Hamiltonian is differentiable
with respect to J. Assuming that fi; shows logarithmic or power-law behaviour for J = 0,
it should have the form

- - ] —g™
Fus = C1e¥ % log e + Cae® ; L .1)
2

where G and Cy are some constaqts, a; and ay are functions of J with a gf =0 =0
and ap(J) — 0 for J — 0. The second term converges to Cz¢%loge when J — 0. From
(5.1,

1 {8 fis (a)
)= == 2 1 0 52
(4] Jl‘),(M)Moc € Y; 00g5+ {€) 5.2)
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where contributions vanishing faster than eloge (for ¢ — Q) are included in O(e}. The
regular part of the free energy yields a certain constant term. Then, we generally obtain the
temperature dependence of correlation functions in the form

(D) Z g +o1¢loge. (5.3)

Condition (ii) results in the strong cancellation of interaction energies at the ground
state. Here, we introduce notation for the ground-state configuration of the system as {g;}
and the spin product O; = s, - -5, in Hy, at the ground state a5 G; = g;,...g;,. The
Ju-dependent part of the ground-state energy eg(Ji) is written as

() =—Ju Y Gi. (5.4)

In the case where ), O; has even symmetry for the spin inversion of Hy and #; (i.¢. both
n® and n® are even), condition (ii) is automatically satisfied. Otherwise, condition (ii)
yields

- Ty Z G =—Ju Z(""gi) that is, Egi =0 (5.3)

We exclude from our arguments the case when condition (ii) is asymptotically satisfied
only in the thermodynamic limit. Then, we can rewrite condition (3.5) as

Ya=336 ad Y G=0 (5.6)

m i€Rn eRn

where {R,} denote a set of finite regions containing a finite number of spins and { € R,
denotes that all the spins in G; are included in R,,.

6. Symmeiries and vanishing derivatives

6.1. Basic symmetries

In this section, we derive some properties which depend only on the symmetry of the relevant
model. We consider here the case for N = 2, i.e. the Hamiltonian H = H; 4+ H2 4+ Hia for
e>0

We assume that H;2 has odd symmetry for the spin inversion of Hy. Then, the
interaction H;; has the form

Hip=—J Y OP0P (6.1)

where sz) changes its sign for the spin inversion of H;. Hereafter, we omit the subscript
of Ji; and write Ji2 as J for simplicity.

Let us consider the transformation of spin configurations in which all the spins on
'H; are reversed and the spins on X, are unchanged. The energy of model H with
interaction J for spin configuration C equals the energy of model H with the interaction
—J for the transformed spin configuration C'. As a result, we can find one-to-one
correspondence for the Boltzmann factor arising from configurations C and C’. Summing
over all configurations, we find that the partition functions Z(J) and Z{(—J) are the same

Z(J)y = Z(~J). (6.2)
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Since we consider the partition function without an external field, we obtain from (6.2), for
the critical temperature T;(J) and the exponent o(J) of the specific heat,

L) =T(-J]) and a(J) =a(-J). (6.3)

From (6.3), we can conclude that any odd dernvatives of T.(J} and a(J) are equal to zero
when they exist.

Next, we study the symmefry of the correlation functions wj,;,(J/), which are the
expectation values of the following two-spin product with the weight corresponding to
the emerging order as

Tr giujosfgsjg exP[_ﬁH]
Z({n

Wiy J) = ~ exp[—re(J)*] (6.4)

and we also study the symmetry of the susceptibility
X = wyp(T) ~ €)Y (6.5)
injo

where {gi,,} is the sign corresponding to the emerging order and r is the distance between
site ip and jp. We can assume, without loss of generality, that site iy lies on .
Corresponding to the change of interaction J to —-J, the quantity gy changes its sign
when site jo belongs to H; and then g;,;,5,5;, is even for the spin inversion of Hy. As a
result, we again arrive at

Wi jo(J) = Wigjo (=T} and () =x(=0) (6.6)
and, hence,

v(J) = v(=J) and y(I)=y{(=J). (6.7)

6.2, Vanishing cases

The above argument cannot exclude the case when the critical temperature and exponents
are not differentiable at J = 0. The critical coefficient, indeed, behaves as a cusp and
is not differentiable at J = 0 when the system is not translationally invariant. Here, we
show, using the scaling hypothesis, that the first-order derivatives of the critical temperature
and exponents exist and they are vanishing. Let us consider the free energy f without the
external field as

Ff~Ce¥%loge (6.8)

where C is some constant. Differentiating (6.8) with respect to interaction J and taking a
limit 7 = 0, we obtain

acC de de do
0=(57) e*loge + Ce _(B—J’) + Cé? loge[(z )~ (31) (aj) logE] (6.9)

and, as a result,
e oe
(3—-])0 =0 and (a—j)n =qQ. (610)

().



Non-universal eritical behaviour of two-dimensional Ising systems 7307

Next, let us consider the free energy f with external field &, We assume the scaling
form of f as

fi(Pe, a%h) = Af (e, h) (6.11)

where A is some parameter and p and g are numbers independent of ¢ and 7. They are
related to exponents « and ¥ by

1 2 -1
¢=2-—= and p=2__, (6.12)
p P
From (6.10) and (6.12), we obtain (8p/3J)s = 0. The partial derivative of f shows the

same scaling form as
ofy(APe, MRy | Of;(¢. h)

aJ aJ (6.13)
Differentiating (6.11) with respect to J, a straightforward calculation yields
logh [ dg
M@, 1) — (—) =0 6.14
g \8J/,5 €19

fore — 0, J — Oand A%k = 1, where M{¢, k) = 8f; (e, h)/8h is the magnetization. Note
that (8¢/3J) is independent of #. From (6.14), we obtain (8¢/8.J);—p = 0 and, as a result,

ay _
(57)1=o =10 (6.15)

7. The non-vanishing derivatives

In this section, we show the non-universal behaviour of the relevant system when it satisfies
conditions (i) and (ii). We use the formulae (5.3) and (5.6) derived from (i) and (ii),
respectively, and (6.10) and (6.15) result from the symmetry of the model. The properties
(5.6), (6.10) and (6.15) are valid when n® or a®? (or both n® and n®) are odd. Let us
consider the weighted susceptibility

X = Bud ) Bini {5 ) 7.1

igfo
where g;,;, i the sign comresponding to the emerging order as gy, = sgn(g,&;). All we
have to do here is to differentiate (7.1) in terms of J; and show that the second dominant
term: shows the logarithmic singularity xploge with ¢ = (T — )/ Te.
Let us introduce the following notation. Interaction Hy; is expressed as

Hu=—-JY O and O =0"00 (1.2)
i
where Jyr is written as J for simplicity. The vector r; denotes the coordinate of the spin
5; and R; = [ri, ..., r;} denotes the coordinate of the spin product O; = s;, ---5;. The
expectation value of (; is expressed as a function of R; as

{O;) = colRy) + c1{R)eloge. 73

We also write R C R, (ori € R,;) whenr; € R, for all r; € R;.
Here we derive finite derivatives of exponent p. The first-order derivative of (7.1) is

X ) iyt k

(32) =300 2 [tu5k010Ph0 = G0 0% 7.4
= injo i

where { }o denotes the expectation value taken for J = 0. All the terms cancel except the

following two cases:
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(-1} 85, 85, € Hy {or 835, 5j, € Hi) and both n® and n® are even; and

(1-2) 51, € Hy, 55 € He and both 2® and n® are odd.
The derivatives (dy/3J)y and (87,/8.J)p of the latter case (I-2) vanish as shown in section
6. As aresult, we have only to treat the case (I-1) as the first-order derivative. This case is a
simple generalization of the argument for the eight-vertex model, as in section 4. Derivative
(7.4) is written as

3 =83 Y 20 3 [1905,01% — (su60P0] 0Pk, 79
8J J= i jo

This is a generalization of (4.3). From (3.2) and (5.3), we obtain the following temperature
dependence:

a 14
(%)#0 = ¥p ; g [au(R;)E + a1 (R;) log e:| [eo{ R} + c1(Ri)e loge] (7.6)
where ap(R;), ai1(R), co(R;) and c1(R;) are some constants The term G; = QU‘)G“)

factorized so that the inside of the brackets |- - -][- =+] in (7.6) are Eosmve We generally
cannot omit the term al(R) The sums 3, g Yao(R) and PN Ya(R) appear as the
coefficient of (35:/3.J); Je=0r where ¥ is the susceptibility of the model described by the

Hamiltonian M, = M; — J; 3 Om and they are finite in the thermodynamic limit. The
coefficient of log ¢, namely

D Gilag(R)er(R) + ay (Ry)ep(R)) .7

is finite because 3", G ap(R:), T, 6P a1 (R;), 6P eo(R:) and GP%¢ (R,) are all finite. This
is the first-order derivative of y.

For all cases, except when both OU‘) and 0(!) have even symmetry (i.e. case (I-1): both
n® and n®) are even), we obtain, from (6.10) and (6.15),

aTc . By _
(797)0 =0 and (aJ)n =0. {(7.8)

In these cases, we have to show that the second-order derivatives are non-vanishing and
finite. From (3.1) and (7.8), the second-order derivative of the susceptibility x is

a2 92 32
(a—ﬁ)ho ~ xo[ »(0 )E 5 (a—;) ( - J’;) 1oge(0)] (19)

Hence, the existence of the logarithmic singularity is the sign of continuously varying critical
exponents. All we have to do is find a term proportional to xploge in the second-order
derivative of x and to show that the coefficient of xgloge is finite.

Differentiating x = BuZ 3 (s;,5;} twice with respect to J, we obtain

3%y
(ﬁ) = ﬁaﬂ% zglo.fo ZZ[ S.OSJDO(R)OU‘))O _ (sius_m) (O(k)o(k)) ] (OE{}O}D>O
J=0

ioJo
(7.10)

where we have used the fact that 2% or n® (or both n™® and 2®) are odd and that the
expectation value {5; ...s, )0 equals zero when n is odd. The following case remains
non-vanishing;
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(-1) 85, 85, € He (01 554, 85, € Hy) ¥ is even and #® is odd; and
(T-2) s, 5, € My (o 5,,, 53, € H;) and both ™ and n® are odd.

Both cases can be treated simultaneously. From (3.2) and (5.3), derivative (7.10) shows the
following temperature dependence:

X3 GG |:ao(R,-, R,)é +ar(Ry, Rj)loge} [co(Ri, R;) + c1(R;, Ry)eloge]
i
=xo)_ ) GiGUAR, Ry) (7.11)
i

where Q(R;. R;) is positive and ao(R;, R;), a1(R;, R;), co(Ry, R;) and ¢1(R;, R;) are some
constants. This summation can be regrouped by {R,}, and using condition (56} (i.e.
condition (ii): }_;.z, G = 0), we obtain

X0 D " GG QR + ARmi, R + ARu))

mm' 1 ER ey JER e

2x09., . GiGi(ARmi VAR - V)RR, Rrr) (7.12)

mm’ ey &R,
where R,, C R, and R,y C R,y are fixed for each R,, and R, respectively, and we have
used the following notation:

ARpi V=Arp,, -V + + Arpi - Vi

n

ARpyj - V= Brmip - V;l +et Al V;n (7.13)

where V; and V{ are the gradients operating on the coordinates of s; and A,,; - ¥V, and
Ay V' operates on the first and second arguments of Q{Rp, Ru).
The first suramation in (7.12) is classified by the distance between R,, and R,y as

=2 > (7.14)

! romm'|m—m|=r

where |m — m’| = r denotes that r K minf|r; —rp| |1 € Ry, 1y € Ry} <r + Ar and Ar
is a constant comparable to the mean size of {R,,}.

As €2 is a smooth and decreasing function of r and all {R,,) denote finite regions
containing a finite number of spins, each term in (7.12} is bounded by

GiGi(ARn - V(AR - VIR € const(AR - V(AR -VHQ (7.15)
where
AR V=Ar -V, +-- -+ AFr-V;, (7.16)

and a similar equation is defined for AR . V'
Then, the coefficient of ygloge in (7.12) is bounded as

Y (ARp; - VI(ARw; - VIF(, [R]) < D (ARw; - VHARw; - VIF(r, [Ri})

r r<fy

+ const f " Pr (AR V)(AR- VOE(r, {Ru)) (1.17)

]
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where

Fr {R}) = Z Z GiGilao(R;, Ry)ei1(Ry, Rj) + a1(Ry, Ry)eo(R,, Ry)]

mm' - |=r ieR,, JER,»

(7.18)

is a finite function of r (see (7.7)).
Our aim is to show that (7.17) is finite. The first sum is, of course, finite and the second
term is bounded by

o
Af &Er VF(r (R} =4 dS%E A'erZ—F <0 (7.19)
ro r

= r=rg

where A is some constant,

8. Generalization

Condition (ii) can be generalized in the following two points.
First, it is straightforward to generalize the form of the interaction Hy as

Hy = Z H(P) and (P) = J(P) Z O(k}ogi) (8.1)

where each H(” ) satisfies condition (ii).

Second, the values of n and n® have been fixed. This condition is necessary for
showing the cancellations of correlations in the zeroth- and first-order terms in (7.12)
using the condition 3 ;. G: = 0. However, our argument is valid for more complicated
interactions, i.e. the case when n® and n* depend on the region R,,. Each contribution
from each R, to the derivatives is classified into the cases shown in sections 6 and 7. For
the first-order derivatives, there is no difference. For the second-order derivative, all the
contributions to (3%y/872)o coming from R, and R, vanish except when both n® +n(m
and n) + nf,? are even. (Otherwise the argument in section 6 is valid for each term and the
contributions to the derivative vanish,) The non-vanishing case can be treated in the same
way as in section 7.

9. Conclusion

We have proved that some Ising systems satisfying conditions (i) and (ii) in section 2 show
non-universal critical behaviour. The perturbational expansion in terms of the interaction
J is performed. This method results in the exact first-order derivatives (4.6} in the case of
the eight-vertex model. We have used conditions (5.3) and (5.6), which are derived from
conditions (i} and (ii), respectively, and (6.10) and (6.15), which result from the symmetry
of the model. The existence of finite and non-zero derivatives (8y/3J) or (3%y/8J%)
is evidence of continuous variation of critical exponents. These derivatives are derived in
(7.4)~(7.7) and (7.10)~7.19) for the first- and the second-order derivatives, respectively.
Finally, the straightforward generalization of condition (i1) is commented on in section 8.
This condition is valid for generalized spin-§ Ising models and can easily be generalized
for other classical systems.
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