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systems 
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Wako, Saitama, 351-01, lap& 
t Deparrment of Physics, University of Tokyo, Hongo, Bunkyoku, Tokyo. 113. Japan 
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Abstract 'MO conditions are derived for lsing models to show non-universal Critical behaviour, 
namely, conditions concerning (i) logarithmic singularity of the specific heat and (ii) degeneracy 
of the ground sfate. These conditions are satisfied by the eight-verlex model, the Ashkit-Teller 
model, some king models with short- or long-mge interactions and even king systems without 
the translational or rotational invariance. 

1. Introduction 

The universality of critical exponents is one of the most important concepts in critical 
phenomena. According to this universality hypothesis, critical exponents depend only upon 
the dimensionality, the symmetry and the interaction range of Hamiltonians, namely they are 
independent of the details of the relevant Hamiltonian such as the strength of the interactions 
in ordinary situations. 

It is quite interesting to study under what condition this hypothesis is violated from the 
form of the Hamiltonian. 

The first example that violates the universality hypothesis is the eight-vertex model 
solved by Baxter [l]. This model can be mapped [2,3] onto the two-layered squarelattice 
Ising model, in which two layers interact with each other, via a four-body interaction 
54. The critical exponents of this model vary with parameter p, which is a function of 
interaction energies. The exponents are obtained [I]  as a = 2 - r / p ,  p = n/16p, 
U = x/2p and the scaling hypothesis or the weak universality hypothesis [4] insists 
that y = l v / 4  = l x / 8 p L ,  8 = 15, = 114. Kadanoff and Wegner [3] have shown 
that the existence of marginal operators is a necessary condition for the appearance of 
continuously varying critical exponents. Kadanoff and Brown [5] have shown that the 
long-range behaviour of the correlations of the eight-vertex and the Ashkin-Teller models 
are asymptotically the same as those of the Gaussian model. 

There exists another model which consists of short-range two-body interactions and 
which is believed to have continuously varying critical exponents. The s = f square- 
lattice Ising model with the nearest-neighbour interaction J and the next-nearest-neighbour 
interaction J' have been studied by many authors [6-121 to obtain the phase diagram. The 
numerical calculations of van Leeuwen [13], Nightingale [14] and Swendsen and Krinsky 
[15] are the first to show the non-universal critical behaviour of this model. The singular 
part of the free energy is calculated perturbatively by Barber 1161. The results of the 
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high-temperature expansion by Oitmaa [ 171 agree with these calculations. The coherent- 
anomaly method (CAM) [18-22] is applied to this model and the continuously varying 
critical exponents are estimated with errors smaller than - 1% [21,221. The degeneracy 
of the ground-state energy and the existence of a multi-component order parameter have 
been studied by Jungling [23] and Krinsky and Muhamel [24]. A more general Hamiltonian 
has been investigated by the present authors I221 which includes the above two models as 
special cases and which has continuously varying critical exponents. 

In the present paper, we phenomenologically derive a sufficient condition which has 
continuously varying critical exponents. This study is a generalization of the argument 
reported in [25]. Our condition is satisfied in the eight-vertex model, the Ashkin-Teller 
model and the s =~ 4 square-lattice king model with next-nearest-neighbour interaction. 
Our condition is also satisfied by some systems including long-range interactions and with 
some systems without translational or rotational invariance. 

Brief explanations of the relevant models are given in section 2, together with 
some explicit conditions on continuously varying critical exponents. A phenomenological 
perturbation scheme [26] is explained in section 3 and applied to the eight-vertex model 
in order to demonstrate that our scheme provides the exact first-order derivative of the 
critical temperature and exponent y of the eight-vertex model in section 4. The temperature 
dependence of correlation functions and the characteristic cancellations of interaction 
energies at the ground state are discussed in section 5. The symmetry of the relevant 
model is studied in section 6. In section 7, the perturbational scheme explained in section 3 
is applied to the model defined in section 2. It is derived that there exist finite first- or 
second-order derivatives (with respect to the interaction energies) of the critical exponent 
y and, hence, that it varies continuously as a function of interaction energies. Finally, 
in section 8, the condition in section 2 is generalized to include a more general type of 
interaction. 

2. Models 

Let us consider the following Hamiltonian: 

where {E&]  is a finite set of two-dimensional king systems. In the present paper, we derive 
that the model with Hamiltonian (2.1) will have continuously varying critical exponents 
provided it ratisfies the following two conditions. 

(i) The specific heat of ' H k  shows the logarithmic singularity at the critical temperature 
T,, which is independent of k .  

(ii) The ground-state energy of the total Hamiltonian 'H is invariant for the spin inversion 
of each 1.I'. Here. 7&, is written as 

where Ujk' and U!" are the n")-body and n(')-body spin product of spins belonging to ' H k  
and 'Hi, respectively. 

The logarithmic singularity in condition (i) results in the temperature dependence of the 
correlation functions of the form ($is,) =CO + c tc ln t ,  where E = (T  - Tc)/Tc and CO and 
CI are some constants. This formula is derived in section 5. 

The restriction on 0:') and 0;) in condition (U) can be partially removed and more 
complicated interactions are permitted, i.e. rick) and n(') can depend on the region 72, in 
(5.6). This generalization is explained in section 8. 
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3. Perturbational scheme 

To derive the non-universal critical behaviour of these models, let us consider the 
perturbational expansion [26] with respect to interaction energies. The susceptibility x 
is assumed to behave as 

x - 6 ( J ) - y ( J )  E ( J )  = (T  - T , ( J ) ) J T , ( J )  (3.1) 

where J is an interaction energy. Differentiating x with respect to J .  we obtain 

where the subscript 0 denotes J = 0. Hence, we can obtain ( a y / a  J)o from the coefficient 
of the temperature dependence xologt.  On the other hand, the susceptibility is expressed 
by the two-spin correlation functions in the form 

(3.3) 

where ,E = l / k s T ,  p~g is the Bohr magneton and [g:ojo] denote the signs coming from the 
emerging order. We differentiate (3.3) and estimate ( a y / a  J)o  by comparison with (3.2). 
The existence of a finite and non-vanishing derivative of the exponent y is evidence for the 
appearance of continuously varying critical exponents. 

4. Example 

Here we give two important examples. Let us consider the zero-field eight-vertex model. 
The Hamiltonian a g v  of this model is written as Hgv = ‘HI  + ‘HZ + 3112, where HI and 
E2 denote the following Hamiltonians: 

and 7-112 is 

‘HIZ = - J 4 C ~ i j ~ i + ~ j + 1 s i + l j s i j + 1 .  (4.2) 

This model decouples into the two squarelattice king models ‘HI and Hz when J4 = 0. 
The interaction Hlz  has even symmetry for the spin inversion of each subsystem ‘HI and 
‘Hz and, hence, the energy of ‘H~V is four-fold degenerate in the whole temperature region. 
This model obviously satisfies conditions (i) and (ii) in section 2. The weight giojo equals 
1 for J‘ > 0. Differentiating (3.3) with respect to 54 and using the fact that the model 
decouples into two layers when J4 = 0, we obtain the following expression: 
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where ( )o denotes the expectation value for 54 = 0. This expression coincides with 

K Mincami and M Suzuki 

xo Y(0J 
~ ( 0 )  J' WO' (4.4) 

Here, WO denotes the nearest-neighbour two-spin correlation function which shows the 
following behaviour: 

at the critical point. Comparing (4.4) and (4.5) with (3.2), we obtain 

which are identical to the derivatives obtained from the exact result by Baxter. 

tions is another example. The Hamiltonian of this model is given in the form 
Xi + X2 + XI*, where 'HI and 7fz are given by (4.1) for J' < 0 and XIZ is 

The square-lattice Ising model with antiferromagnetic next-nearest-neighbour interac- 
= 

The ground state of this model is ordered as the Nee1 state in each sublattice for the 
interaction region 1 J / J ' l  < 2, in which the ground-state energy is invariant for the spin 
inversion of each sublattice. It is in this interaction region IJ/J'I  < 2 that this model is 
considered to have continuously varying critical exponents. This model also satisfies the 
condition in section 2. It is shown in [16.25] that this model has continuously varying 
critical exponents with derivatives (ay/aJ), = 0 and (azy/aJz)o # 0. 

5. Preliminary formulae 

The temperature dependence of correlation functions is specified from condition (i). For the 
purpose of obtaining multi-spin correlation functions, let us consider 7& = Xk - TO. where 
0 denotes a certain spin product. The free energy fis of this Hamiltonian is differentiable 
with respect to f .  Assuming that As shows logarithmic or power-law behaviour for f = 0, 
it should have the form 

where C1 and C2 are some constagfs, ff, and ffz are functions of f with ffl ( f  = 0) = 0 
and a z ( f )  --f 0 for f --t 0. The second term converges to Cze2 log E when f -+ 0. From 
(5.1), 
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where contributions vanishing faster than   log^ (for E + 0) are included in O ( E ) .  The 
regular part of the free energy yields a certain constant term. Then, we generally obtain the 
temperature dependence of correlation functions in the form 

(0) =co+clElogt. (5.3) 

Condition (ii) results in the strong cancellation of interaction energies at the ground 
state. Here, we introduce notation for the ground-state configuration of the system as {gi 1 
and the spin product U, = si, . . . si" in ' H k j  at the ground state as Gi = gi, . . . gi-. The 
Jkj-dependent part of the ground-state energy EG(Jkl) is written as 

(5.4) 

In the case where xi Ui has even symmetry for the spin inversion of ' H k  and 'Hi (i.e. both 
dr) and n(') are even), condition (ii) is automatically satisfied. Otherwise, condition (ii) 
yields 

- J k j  Gj = - JW E(-@ that is, Gj = 0. (5.5) 
i i i 

We exclude from our arguments the case when condition (U) is asymptotically satisfied 
only in the thermodynamic limit. Then, we can rewrite condition (5.5) as 

where (E,] denote a set of finite regions containing a finite number of spins and i E R, 
denotes that all the spins in Gi are included in R,. 

6. Symmetries and vanishing derivatives 

6.1. Basic symmetries 

In this section, we derive some properties which depend only on the symmetry of the relevant 
model. We consider here the case for N = 2, i.e. the Hamiltonian 'H = 'HI + 'H2 + 'Fit2 for 
E 5 0. 

Then, the 
interaction 'HI* has the form 

We assume that   HI^ has odd symmetry for the spin inversion of 'H2. 

(6.1) 

where 012) changes its sign for the spin inversion of 'H2. Hereafter, we omit the subscript 
of JIZ and write J12 as J for simplicity. 

Let us consider the transformation of spin configurations in which all the spins on 
'HZ are reversed and the spins on 1-11 are unchanged. The energy of model 'H with 
interaction J for spin configuration C equals the energy of model 'H with the interaction 
-J for the transformed spin configuration C'. As a result, we can find one-to-one 
correspondence for the Boltzmann factor arising from configurations C and C'. Summing 
over all configurations, we find that the partition functions Z(J )  and Z ( - J )  are the same 

Z(J)  = Z(-J). (6.2) 
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Since we consider the partition function without an external field, we obtain from (6.2). for 
the critical temperature T,(J) and the exponent a ( J )  of the specific heat, 

K M i n m ‘  and M Suzuki 

T,(J) = T,(-J) and a(J)  = o r ( - J ) .  (6.3) 

From (6.3), we can conclude that any odd derivatives of T,(J) and a(J )  are equal to zero 
when they exist. 

Next, we study the symmetry of the correlation functions miojo(J), which are the 
expectation values of the following two-spin product with the weight corresponding to 
the emerging order as 

and we also study the symmetry of the susceptibility 

where (giojo) is the sign corresponding to the emerging order and r is the distance between 
site io and j o .  We can assume, without loss of generality, that site io lies on 7.11. 
Corresponding to the change of interaction J to - J ,  the quantity gioj, changes its sign 
when site j o  belongs to ‘HZ and then gioj&sj0 is even for the spin inversion of 7.12. As a 
result, we again arrive at 

~ i , j o ( J )  = miojo(-J)  and x ( J )  = x ( - J )  (6.6) 

and, hence, 

w ( J )  = u( -J )  and y ( J )  = yf-J). (6.7) 

6.2. Vanishing cases 

The above argument cannot exclude the case when the critical temperature and exponents 
axe not differentiable at J = 0. The critical coefficient, indeed, behaves as a cusp and 
is not differentiable at J = 0 when the system is not translationally invariant. Here, we 
show, using the scaling hypothesis, that the first-order derivatives of the critical temperature 
and exponents exist and they are vanishing. Let us consider the free energy f without the 
external field as 

(6.8) 

where C is some constant. Differentiating (6.8) with respect to interaction J and taking a 
limit J + 0, we obtain 

f N_ C E 2 - U  log E 

o =  - € ~ l o g E + c E * -  E (”) aJ + C 2 l o g c  [ (2-(U)- : ( - ;;)o - ( g ) o l o g r ]  (6.9) (3 
and, as a result, 

(E)o = 0 (g)o = 0 and (;)o = 0. (6.10) 
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Next, let us consider the free energy f with external field h. We assume the scaling 
form of f as 

(6.11) 
where A is some parameter and p and q are numbers independent of c and h. They are 
related to exponents a and y by 

f~(A’c, A4h) = h f ~ ( 6 ,  h )  

29 - 1 and y=- ,  
1 ( u = 2 - -  
P P 

(6.12) 

From (6.10) and (6.12), we obtain ( a p / a J ) o  = 0. The partial derivative of f shows the 
same scaling form as 

afJ(A’6, h4h) afI(6. h)  
a.i ‘ 

= h  
aJ 

Differentiating (6.1 1) with respect to J ,  a straightforward calculation yields 

(6.13) 

(6.14) 
. .  

for 6 + 0, J + 0 and A9h = 1, where M ( E ,  h)  = af,(+ h)/ah is the magnetization. Note 
that ( a q / a J )  is independent of h. From (6.14), we obtain (ag/aJ) ,d  = 0 and, as a result, 

(6.15) 

7. The non-vanishing derivatives 

In this section, we show the non-universal behaviour of the relevant system when it satisfies 
conditions (i) and (ii). We use the formulae (5.3) and (5.6) derived from (i) and (ii), 
respectively, and (6.10) and (6.15) result from the symmetry of the model. The properties 
(5.6), (6.10) and (6.15) are valid when or n(’) (or both n@) and do) are odd. Let us 
consider the weighted susceptibility 

x = P& Cgiojn(siosjo) (7.1) 
iojo 

where giojo is the sign corresponding to the emerging order as giojo = sgn(gi,gj,). All we 
have to do here is to differentiate (7.1) in terms of and show that the second dominant 
term shows the logarithmic singularity xo log6 with t = (T - T,)/T,. 

Let us introduce the following notation. Interaction ?fkl is expressed as 

3 t k I  = -J  c u i  and uj = of’uy’ (7.2) 
i 

where Jkr is written as J for simplicity. The vector r; denotes the coordinate of the spin 
s; and Rj = [r;, , . . . , rim) denotes the coordinate of the spin product U; = s;, . . .s;”. The 
expectation value of Ui is expressed as a function of Ri as 

We also write Ri c R,,, (or i E R,) when r,r E ‘R,,,, for all r, E Rj. 

(Ui)  = co(Ri) + ~ 1 ( R i ) ~ l o g 6 .  (7.3) 

Here we derive finite derivatives of exponent y.  The first-order derivative of (7.1) is 

(7.4) 

where ( )O denotes the expectation value taken for J = 0. All the terms cancel except the 
following two cases: 
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U-I )  sio, sjo E 'HA (or sio, sj, E 'H;) and both n(') and n(') are even; and 
(1-2) sin E ' H k ,  sj, E 'Hi and both dt) and d') are odd. 

The derivatives ( a y / a J ) o  and (aT,/aJ)o of the latter case (1-2) vanish as shown in section 
6. As a result, we have only to treat the case 0-1) as the first-order derivative. This case is a 
simple generalization of the argument for the eight-vertex model, as in section 4. Derivative 
(7.4) is written as 

This is a generalization of (4.3). From (3.2) and (5.3). we obtain the following temperature 
dependence: 

where ao(Ri), a,(R;),  co(Ri) and cl(Ri) are some constants. The term Gi = Gy'G;) is 
factorized so that the inside of the brackets [. .I[, I . I  in (7.6) are ositive. We generally 

coefficient of ( a f k ; / a & )  j,+ where kt is the susceptibility of the model described by the 
Hamiltonian '7& = 'Hk - .& Xi U:'), and they are finite in the thermodynamic limit. The 
coefficient of l og€ ,  namely 

(7.7) 

is finite because xi G?'&(Ri), 1; #'a l (Ri ) ,  G/)co(Ri) and # ) C I ( R ~ )  are all finite. This 
is the first-order derivative of y .  

For all cases, except when both U?' and Of' have even symmetry (i.e. case (1-1): both 
dk) and n(l)  are even), we obtain, from (6.10) and (6.15), 

cannot omit the term al (Ri ) .  The sums CiG?)aO(Ri) and xjGi R )  al(R,) appear as the 

Gi(UO(R,)Cl (R , )  + a1 (R;)co(R;)) 
i 

(z)o = O  and ( z)o = 0. 

In these cases, we have to show that the second-order derivatives are non-vanishing and 
finite. From (3.1) and (7.Q the second-order derivative of the susceptibility x is 

Hence, the existence of the logarithmic singularity is the sign of continuously vaying critical 
exponents. All we have to do is find a term proportional to xo log E in the second-order 
derivative of x and to show that the coefficient of xo log E is finite. 

Differentiating x = ,9& C(s;,sio) twice with respect to J .  we obtain 

(7.10) 

where we have used the fact that dk) or n(') (or both n'*) and n(;)) are odd and that the 
expectation value (s;, . . .s;.)o equals zero when n is odd. The following case remains 
non-vanishing: 
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(11-1) si,,, sj,, E '7% (or sio, sjo E 'H,) dk) is even and 
(11-2) si,, sj, E 7-h (or s,,, sj, E E,) and both n(*) and n(') are odd. 

is odd; and 

Both cases can be treated simultaneously. From (3.2) and (5.3), derivative (7.10) shows the 
following temperature dependence: 

where Q(Ri. R j )  is positive and ao(Ri ,  Rj),  al(R;. Rj), c ~ ( R i ,  Rj) and cl(Ri, Rj) are some 
constants. This summation can be regrouped by {RmJ, and using condition (56) (i.e. 
condition (ii): ,J&- Gj = 0), we obtain 

where R, c R, and R,, C Rm, are fixed for each Rm and Em., respectively, and we have 
used the following notation: 

ARmi V Arm,,, . V,, + ' ' + Armnin , Vi" 

A Rm, . V' Arm; j ,  . Vj1 + . . , + Arm;j, , V;a (7.13) 

where Vi and 0: are the gradients operating on the coordinates of si and A,; . V ,  and 
Am,j V' operates on the first and second arguments of Q(R,, Rms). 

The first summation in (7.12) is classified by the distance between R, and Rm# as 

c=c c (7.14) 

where Im -,'I = r denotes that r 6 min{lri -rill I ri E Em, ri, E Rm,) < r + Ar and Ar 
is a constant comparable to the mean size of {R,). 

As Q is a smooth and decreasing function of r and all [Rm) denote finite regions 
containing a finite number of spins, each term in (7.12) is bounded by 

mm' I mm'lm-m'l=r 

GiGj(ARmi . V)(ARm,j . V')Q < const(AR . V ) ( A R  . V')Q (7.15) 

where 

A R  . V s Ar . Vi, + . . . + Ar , Via (7.16) 

and a similar equation is defined for A R  . V'. 
Then, the coefficient of x o l o g ~  in (7.12) is bounded as 

+ const d2r ( A R  . V ) ( A R  V')F(r, (R,)) 6 (7.17) 
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where 

F(r ,  ( & I )  = 
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GGj[ao(Ri, Rj)ci(R,,  Rj) + a l ( R i ,  Rj)co(R,, Rj)]  
mm'Im-m'l=r ieR,,,jsRmr 

(7.18) 

Our aim is to show that (7.17) is finite. The first sum is, of course, finite and the second 
is a finite function of r ( see  (7.7)). 

term is bounded by 

where A is some constant. 

8. Generalization 

Condition (ii) can be generalized in the following two points. 
First, it is straightforward to generalize the form of the interaction '& as 

where each W E )  satisfies condition (ii). 
Second, the values of n@) and n(l) have been fixed. This condition is necessary for 

showing the cancellations of correlations in  the zeroth- and first-order terms in (7.12) 
using the condition xieK Gi = 0. However, our argument is valid for more complicated 
interactions, i.e. the case when n(') and n(') depend on the region R,. Each contribution 
from each R, to the derivatives is classified into the cases shown in sections 6 and 7. For 
the first-order derivatives, there is no difference. For the second-order derivative, all the 
contributions to ( a z y / a J z ) ~  coming from R, and R,. vanish except when both n:) +n!? 
and n i )  + n:? are even. (Otherwise the argument in section 6 is valid for each term and the 
contributions to the derivative vanish.) The non-vanishing case can be treated in the same 
way as in section 7. 

9. Conclusion 

We have proved that some king systems satisfying conditions (i) and (ii) in section 2 show 
non-universal critical behaviour. The perturbational expansion in terms of the interaction 
J is performed. This method results in the exact first-order derivatives (4.6) in the case of 
the eight-vertex model. We have used conditions (5.3) and (5.6), which are derived from 
conditions (i) and (U), respectively, and (6.10) and (6.19, which result from the symmetry 
of the model. The existence of finite and non-zero derivatives (ay/aJ)o or ( a 2 y / 8 J z ) o  
is evidence of continuous variation of critical exponents. These derivatives are derived in 
(7.4)-(7.7) and (7.10K7.19) for the first- and the second-order derivatives, respectively. 
Finally, the straightforward generalization of condition (ii) is commented on in section 8. 
This condition is valid for generalized spin-S king models and can easily he generalized 
for other classical systems. 
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